EN
Let X and Y be complex Banach spaces of dimension greater than 2. We show that every 2-local Lie isomorphism ϕ of B(X) onto B(Y) has the form ϕ = φ + τ, where φ is an isomorphism or the negative of an anti-isomorphism of B(X) onto B(Y), and τ is a homogeneous map from B(X) into ℂI vanishing on all finite sums of commutators.