PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 226 | 3 | 213-227
Tytuł artykułu

Products of Lipschitz-free spaces and applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that, given a Banach space X, the Lipschitz-free space over X, denoted by ℱ(X), is isomorphic to $(∑_{n=1}^{∞}ℱ(X))_{ℓ₁}$. Some applications are presented, including a nonlinear version of Pełczyński's decomposition method for Lipschitz-free spaces and the identification up to isomorphism between ℱ(ℝⁿ) and the Lipschitz-free space over any compact metric space which is locally bi-Lipschitz embeddable into ℝⁿ and which contains a subset that is Lipschitz equivalent to the unit ball of ℝⁿ. We also show that ℱ(M) is isomorphic to ℱ(c₀) for all separable metric spaces M which are absolute Lipschitz retracts and contain a subset which is Lipschitz equivalent to the unit ball of c₀. This class includes all C(K) spaces with K infinite compact metric (Dutrieux and Ferenczi (2006) already proved that ℱ(C(K)) is isomorphic to ℱ(c₀) for those K using a different method).
Słowa kluczowe
Twórcy
  • Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Campus São José dos Campos - Parque Tecnológico, Avenida Doutor Altino Bondensan, 500, 12247-016 São José dos Campos/SP, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-3-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.