Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Multiplicatively invariant (MI) spaces are closed subspaces of L²(Ω,𝓗 ) that are invariant under multiplication by (some) functions in $L^{∞}(Ω)$; they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of functions constructed by taking linear combinations of the generators of a finitely generated MI space is a new set of generators for the same space, and we give necessary and sufficient conditions on the linear combinations to preserve frame properties. We then apply our results on MI spaces to systems of translates in the context of locally compact abelian groups and we extend some results previously proven for systems of integer translates in $L²(ℝ^{d})$.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
1-16
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
- IMAS-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-1-1