Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We establish the following sharp local estimate for the family ${R_{j}}_{j=1}^{d}$ of Riesz transforms on $ℝ^{d}$. For any Borel subset A of $ℝ^{d}$ and any function $f: ℝ^{d} → ℝ$,
$∫_{A} |R_{j}f(x)|dx ≤ C_{p}||f||_{L^{p}(ℝ^{d})}|A|^{1/q}$, 1 < p < ∞.
Here q = p/(p-1) is the harmonic conjugate to p,
$C_{p} = [2^{q+2}Γ(q+1)/π^{q+1} ∑_{k=0}^{∞} (-1)^{k}/(2k+1)^{q+1}]^{1/q}$, 1 < p < 2,
and
$C_{p}= [4Γ(q+1)/π^{q} ∑_{k=0}^{∞} 1/(2k+1)^{q}]^{1/q}$, 2 ≤ p < ∞.
This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
$∫_{A} |R_{j}f(x)|dx ≤ C_{p}||f||_{L^{p}(ℝ^{d})}|A|^{1/q}$, 1 < p < ∞.
Here q = p/(p-1) is the harmonic conjugate to p,
$C_{p} = [2^{q+2}Γ(q+1)/π^{q+1} ∑_{k=0}^{∞} (-1)^{k}/(2k+1)^{q+1}]^{1/q}$, 1 < p < 2,
and
$C_{p}= [4Γ(q+1)/π^{q} ∑_{k=0}^{∞} 1/(2k+1)^{q}]^{1/q}$, 2 ≤ p < ∞.
This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
1-18
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1