Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded in both X and X'.
Słowa kluczowe
Kategorie tematyczne
- 47B38: Operators on function spaces (general)
- 46E30: Spaces of measurable functions ( L p -spaces, Orlicz spaces, K\"othe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
- 42B25: Maximal functions, Littlewood-Paley theory
- 42B20: Singular and oscillatory integrals (Calder\'on-Zygmund, etc.)
- 46B42: Banach lattices
Czasopismo
Rocznik
Tom
Numer
Strony
231-247
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Steklov Mathematical Institute, St. Petersburg Branch, Fontanka 27, 191023 St. Petersburg, Russia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-3-3