PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 221 | 2 | 141-149
Tytuł artykułu

Universal stability of Banach spaces for ε -isometries

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X, Y be real Banach spaces and ε > 0. A standard ε-isometry f: X → Y is said to be (α,γ)-stable (with respect to $T: L(f) ≡ \overline{span}f(X) → X$ for some α,γ > 0) if T is a linear operator with ||T|| ≤ α such that Tf- Id is uniformly bounded by γε on X. The pair (X,Y) is said to be stable if every standard ε-isometry f: X → Y is (α,γ)-stable for some α,γ > 0. The space X[Y] is said to be universally left [right]-stable if (X,Y) is always stable for every Y[X]. In this paper, we show that universally right-stable spaces are just Hilbert spaces; every injective space is universally left-stable; a Banach space X isomorphic to a subspace of $ℓ_{∞}$ is universally left-stable if and only if it is isomorphic to $ℓ_{∞}$; and a separable space X has the property that (X,Y) is left-stable for every separable Y if and only if X is isomorphic to c₀.
Słowa kluczowe
Twórcy
autor
  • School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
autor
  • School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
autor
  • School of Mathematics and Computer, Wuhan Textile University, Wuhan 430073, China
autor
  • School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-2-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.