Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We say that a real-valued function f defined on a positive Borel measure space (X,μ) is nowhere q-integrable if, for each nonvoid open subset U of X, the restriction $f|_U$ is not in $L^{q}(U)$. When (X,μ) has some natural properties, we show that certain sets of functions defined in X which are p-integrable for some p's but nowhere q-integrable for some other q's (0 < p,q < ∞) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González, improve and complement recent spaceability and algebrability results of several authors and motivate new research directions in the field of spaceability.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
13-34
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
autor
- CAPES Foundation, Ministry of Education of Brazil, Brasília/DF 70040-020, Brazil
- Institute de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
autor
- Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-900, São Paulo, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-1-2