PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 219 | 2 | 155-161
Tytuł artykułu

Lineability and spaceability on vector-measure spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is proved that if X is infinite-dimensional, then there exists an infinite-dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that $ca(ℬ,λ,X)∖ M_{σ}$, the measures with non-σ-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear Algebra Appl. 428 (2008)].
Słowa kluczowe
Czasopismo
Rocznik
Tom
219
Numer
2
Strony
155-161
Opis fizyczny
Daty
wydano
2013
Twórcy
  • Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy
  • Department of Mathematical Sciences, University of Cadiz, Puerto Real 11510, Spain
  • Department of Mathematics and Computer Sciences, University of Catania, 95125, Catania, Italy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.