Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let $L^{φ}(G)$ and $L^{ψ}(G)$ be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach $L^{φ}(G)$-submodule X of $L^{ψ}(G)$, the multiplier space $Hom_{L^{φ}(G)}(L^{φ}(G),X*)$ is a dual Banach space with predual $L^{φ}(G)∙X := \overline{span} {ux: u ∈ L^{φ}(G), x ∈ X}$, where the closure is taken in the dual space of $Hom_{L^{φ}(G)}(L^{φ}(G),X*)$. We also prove that if $φ $ is a Δ₂-regular N-function, then $Cv_{φ}(G)$, the space of convolutors of $M^{φ}(G)$, is identified with the dual of a Banach algebra of functions on G under pointwise multiplication.
Słowa kluczowe
Kategorie tematyczne
- 43A15: L p -spaces and other function spaces on groups, semigroups, etc.
- 47L10: Algebras of operators on Banach spaces and other topological linear spaces
- 46E30: Spaces of measurable functions ( L p -spaces, Orlicz spaces, K\"othe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
- 43A22: Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
Czasopismo
Rocznik
Tom
Numer
Strony
19-34
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, University of Tabriz, Tabriz, Iran
autor
- Department of Mathematics, University of Zanjan, Zanjan 45195-313, Iran
autor
- Department of Mathematics, University of Zanjan, Zanjan 45195-313, Iran
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-1-2