EN
Let us denote by C(α) the classical Banach space C(K) when K is the interval of ordinals [1,α] endowed with the order topology. In the present paper, we give an answer to a 1960 Bessaga and Pełczyński question by providing tight bounds for the Banach-Mazur distance between C(ω) and any other C(K) space which is isomorphic to it. More precisely, we obtain lower bounds L(n,k) and upper bounds U(n,k) on d(C(ω),C(ωⁿk)) such that U(n,k) - L(n,k) < 2 for all 1 ≤ n, k < ω.