EN
We investigate the deformations of involution and multiplication in a unital C*-algebra when its norm is fixed. Our main result is to present all multiplications and involutions on a given C*-algebra 𝓐 under which 𝓐 is still a C*-algebra when we keep the norm unchanged. For each invertible element a ∈ 𝓐 we also introduce an involution and a multiplication making 𝓐 into a C*-algebra in which a becomes a positive element. Further, we give a necessary and sufficient condition for the center of a unital C*-algebra 𝓐 to be trivial.