EN
We give several conditions for (A,m)-expansive operators to have the single-valued extension property. We also provide some spectral properties of such operators. Moreover, we prove that the A-covariance of any (A,2)-expansive operator T ∈ ℒ(ℋ ) is positive, showing that there exists a reducing subspace ℳ on which T is (A,2)-isometric. In addition, we verify that Weyl's theorem holds for an operator T ∈ ℒ(ℋ ) provided that T is (T*T,2)-expansive. We next study (A,m)-isometric operators as a special case of (A,m)-expansive operators. Finally, we prove that every operator T ∈ ℒ(ℋ ) which is (T*T,2)-isometric has a scalar extension.