Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For a locally compact group G and p ∈ (1,∞), we define and study the Beurling-Figà-Talamanca-Herz algebras $A_{p}(G,ω)$. For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that a locally compact group G is amenable if and only if one-and, equivalently, every-Beurling-Figà-Talamanca-Herz algebra $A_{p}(G,ω)$ has a bounded approximate identity.
Słowa kluczowe
Kategorie tematyczne
- 43A15: L p -spaces and other function spaces on groups, semigroups, etc.
- 46J10: Banach algebras of continuous functions, function algebras
- 43A32: Other transforms and operators of Fourier type
- 46H05: General theory of topological algebras
- 22D12: Other representations of locally compact groups
- 43A99: None of the above, but in this section
Czasopismo
Rocznik
Tom
Numer
Strony
117-135
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Department of Mathematics, Faculty of Science, Istanbul University, Istanbul, Turkey
autor
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G1
autor
- Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-2-2