Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let L = -Δ + V be a Schrödinger operator in $ℝ^{d}$ and $H¹_L(ℝ^{d})$ be the Hardy type space associated to L. We investigate the bilinear operators T⁺ and T¯ defined by
$T^{±}(f,g)(x) = (T₁f)(x)(T₂g)(x) ± (T₂f)(x)(T₁g)(x)$,
where T₁ and T₂ are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T⁺ or T¯ is bounded from $L^{p}(ℝ^{d}) × L^{q}(ℝ^{d})$ to $H¹_L(ℝ^{d})$ for 1 < p,q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.
$T^{±}(f,g)(x) = (T₁f)(x)(T₂g)(x) ± (T₂f)(x)(T₁g)(x)$,
where T₁ and T₂ are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T⁺ or T¯ is bounded from $L^{p}(ℝ^{d}) × L^{q}(ℝ^{d})$ to $H¹_L(ℝ^{d})$ for 1 < p,q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
281-295
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Department of Mathematics, National Central University, Chung-Li 320, Taiwan
autor
- Department of Mathematics, National Central University, Chung-Li 320, Taiwan
autor
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
autor
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-4