EN
The main goal of this paper is to clarify the antisymmetric nature of a binary relation ≪ which is defined for normal operators A and B by: A ≪ B if there exists an operator T such that $E_{A}(Δ) ≤ T*E_{B}(Δ)T$ for all Borel subset Δ of the complex plane ℂ, where $E_{A}$ and $E_{B}$ are spectral measures of A and B, respectively (the operators A and B are allowed to act in different complex Hilbert spaces). It is proved that if A ≪ B and B ≪ A, then A and B are unitarily equivalent, which shows that the relation ≪ is a partial order modulo unitary equivalence.