Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk 𝔻 onto itself preserves the space EXP(𝔻) of exponentially integrable functions over 𝔻, in the sense that u ∈ EXP(𝔻) if and only if $u ∘ f^{-1} ∈ EXP(𝔻)$. Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate
$1/(1 + K logK) ≤ (||u ∘ f^{-1}||_{EXP(𝔻)})/(||u||_{EXP(𝔻)}) ≤ 1 + K log K$
for every u ∈ EXP(𝔻). Similarly, we consider the distance from $L^{∞}$ in EXP and we prove that if f: Ω → Ω' is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then
$1/K ≤ (dist_{EXP(f(G))}(u ∘ f^{-1},L^{∞}(f(G))))/(dist_{EXP(f(G))}(u,L^{∞}(G))) ≤ K$
for every u ∈ EXP(𝔾). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f: 𝔻 → 𝔻, a domain G ⊂ ⊂ 𝔻 and a function u ∈ EXP(G) such that
$dist_{EXP(f(G))}(u ∘ f^{-1},L^{∞}(f(G))) = K dist_{EXP(f(G))}(u,L^{∞}(G))$.
$1/(1 + K logK) ≤ (||u ∘ f^{-1}||_{EXP(𝔻)})/(||u||_{EXP(𝔻)}) ≤ 1 + K log K$
for every u ∈ EXP(𝔻). Similarly, we consider the distance from $L^{∞}$ in EXP and we prove that if f: Ω → Ω' is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then
$1/K ≤ (dist_{EXP(f(G))}(u ∘ f^{-1},L^{∞}(f(G))))/(dist_{EXP(f(G))}(u,L^{∞}(G))) ≤ K$
for every u ∈ EXP(𝔾). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f: 𝔻 → 𝔻, a domain G ⊂ ⊂ 𝔻 and a function u ∈ EXP(G) such that
$dist_{EXP(f(G))}(u ∘ f^{-1},L^{∞}(f(G))) = K dist_{EXP(f(G))}(u,L^{∞}(G))$.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
195-203
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
autor
- Dipartimento di Statistica e Matematica per la Ricerca Economica, Università degli Studi di Napoli Parthenope, Via Medina, 40, 80133 Napoli, Italy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5