Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 203 | 2 | 129-162

Tytuł artykułu

On operators Cauchy dual to 2-hyperexpansive operators: the unbounded case

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Cauchy dual operator T', given by $T(T*T)^{-1}$, provides a bounded unitary invariant for a closed left-invertible T. Hence, in some special cases, problems in the theory of unbounded Hilbert space operators can be related to similar problems in the theory of bounded Hilbert space operators. In particular, for a closed expansive T with finite-dimensional cokernel, it is shown that T admits the Cowen-Douglas decomposition if and only if T' admits the Wold-type decomposition (see Definitions 1.1 and 1.2 below). This connection, which is new even in the bounded case, enables us to establish some interesting properties of unbounded 2-hyperexpansions and their Cauchy dual operators such as the completeness of eigenvectors, the hypercyclicity of scalar multiples, and the wandering subspace property. In particular, certain cyclic 2-hyperexpansions can be modelled as the forward shift ℱ in a reproducing kernel Hilbert space of analytic functions, where the complex polynomials form a core for ℱ. However, unlike unbounded subnormals, $(T*T)^{-1}$ is never compact for unbounded 2-hyperexpansive T. It turns out that the spectral theory of unbounded 2-hyperexpansions is not as satisfactory as that of unbounded subnormal operators.

Słowa kluczowe

Twórcy

  • Department of Mathematics & Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.