Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 200 | 3 | 247-266

Tytuł artykułu

A finite multiplicity Helson-Lowdenslager-de Branges theorem

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We prove two theorems. The first theorem reduces to a scalar situation the well known vector-valued generalization of the Helson-Lowdenslager theorem that characterizes the invariant subspaces of the operator of multiplication by the coordinate function z on the vector-valued Lebesgue space L²(𝕋;ℂⁿ). Our approach allows us to prove an equivalent version of the vector-valued Helson-Lowdenslager theorem in a completely scalar setting, thereby eliminating the use of range functions and partial isometries. The other three major advantages provided by our characterization are: (i) we provide precise necessary and sufficient conditions for the presence of reducing subspaces inside simply invariant subspaces; (ii) we give a complete description of the wandering vectors; (iii) we prove the theorem in the setting of all the Lebesgue spaces $L^{p}$ (0 < p ≤ ∞). Our second theorem generalizes the first theorem along the lines of de Branges' generalization of Beurling's theorem by characterizing those Hilbert spaces that are simply invariant under multiplication by zⁿ and which are contractively contained in $L^{p}$ (1 ≤ p ≤ ∞). This also generalizes a theorem of Paulsen and Singh [Proc. Amer. Math. Soc. 129 (2000)] as well as the main theorem of Redett [Bull. London Math. Soc. 37 (2005)].

Kategorie tematyczne

Czasopismo

Rocznik

Tom

200

Numer

3

Strony

247-266

Daty

wydano
2010

Twórcy

autor
  • Department of Mathematics, University of Houston, Houston, TX 77204-3476, U.S.A.
  • Department of Mathematics, University of Houston, Houston, TX 77204-3476, U.S.A.
autor
  • Department of Mathematics, University of Delhi, Delhi 110007, India

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-3