EN
We define homogeneous classes of x-dependent anisotropic symbols $Ṡ^{m}_{γ,δ}(A)$ in the framework determined by an expansive dilation A, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander-Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Calderón-Zygmund theory on spaces of homogeneous type. We then show that x-dependent symbols in $Ṡ⁰_{1,1}(A)$ yield Calderón-Zygmund kernels, yet their L² boundedness fails. Finally, we prove boundedness results for the class $Ṡ^m_{1,1}(A)$ on weighted anisotropic Besov and Triebel-Lizorkin spaces extending isotropic results of Grafakos and Torres [Michigan Math. J. 46 (1999)].