Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study the spaces
$H_{μ}(Ω) = {f: Ω → ℂ holomorphic: ∫_{0}^{R} ∫_{0}^{2π} |f(re^{iφ})| dφdμ(r) < ∞}$
where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, $H_{μ}(Ω)$ is either isomorphic to l₁ or to $(∑ ⊕ Aₙ)_{(1)}$. Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.
$H_{μ}(Ω) = {f: Ω → ℂ holomorphic: ∫_{0}^{R} ∫_{0}^{2π} |f(re^{iφ})| dφdμ(r) < ∞}$
where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, $H_{μ}(Ω)$ is either isomorphic to l₁ or to $(∑ ⊕ Aₙ)_{(1)}$. Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
157-175
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Faculty of Informatics and Applied Mathematics, University of Yerevan, Alek Manukian 1, Yerevan 25, Armenia
autor
- Institute of Mathematics, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4