PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wynik贸w
Czasopismo
2010 | 197 | 2 | 157-169
Tytu艂 artyku艂u

Linear maps Lie derivable at zero on 饾挜-subspace lattice algebras

Tre艣膰 / Zawarto艣膰
Warianty tytu艂u
J臋zyki publikacji
EN
Abstrakty
EN
A linear map L on an algebra is said to be Lie derivable at zero if L([A,B]) = [L(A),B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a 饾挜-subspace lattice 鈩 on a Banach space X satisfying dim K 鈮 2 whenever K 鈭 饾挜(鈩), every linear map on 鈩(鈩) (the subalgebra of all finite rank operators in the JSL algebra Alg 鈩) Lie derivable at zero is of the standard form A 鈫 未 (A) + 蠒(A), where 未 is a generalized derivation and 蠒 is a center-valued linear map. A characterization of linear maps Lie derivable at zero on Alg 鈩 is also obtained, which are not of the above standard form in general.
S艂owa kluczowe
Czasopismo
Rocznik
Tom
197
Numer
2
Strony
157-169
Opis fizyczny
Daty
wydano
2010
Tw贸rcy
autor
  • Department of Mathematics, Shanxi University, Taiyuan 030006, P.R. China
autor
  • Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-2-3
JavaScript jest wy艂膮czony w Twojej przegl膮darce internetowej. W艂膮cz go, a nast臋pnie od艣wie偶 stron臋, aby m贸c w pe艂ni z niej korzysta膰.