Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let X, Y be complete metric spaces and E, F be Banach spaces. A bijective linear operator from a space of E-valued functions on X to a space of F-valued functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as special cases the classes of Lipschitz, little Lipschitz and uniformly continuous functions. Linear biseparating maps between generalized Lipschitz spaces are characterized as weighted composition operators, i.e., of the form $Tf(y) = S_{y}(f(h^{-1}(y)))$ for a family of vector space isomorphisms $S_{y}: E → F$ and a homeomorphism h: X → Y. We also investigate the continuity of T and related questions. Here the functions involved (as well as the metric spaces X and Y) may be unbounded. Also, the arguments do not require the use of compactification of the spaces X and Y.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
23-40
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-1-3