PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | 195 | 2 | 113-125
Tytuł artykułu

Dimensions of non-differentiability points of Cantor functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a probability vector (p₀,p₁) there exists a corresponding self-similar Borel probability measure μ supported on the Cantor set C (with the strong separation property) in ℝ generated by a contractive similitude $h_{i}(x) = a_{i}x + b_{i}$, i = 0,1. Let S denote the set of points of C at which the probability distribution function F(x) of μ has no derivative, finite or infinite. The Hausdorff and packing dimensions of S have been found by several authors for the case that $p_{i} > a_{i}$, i = 0,1. However, when p₀ < a₀ (or equivalently p₁ < a₁) the structure of S changes significantly and the previous approaches fail to be effective any more. The present paper is devoted to determining the Hausdorff and packing dimensions of S for the case p₀ < a₀.
Słowa kluczowe
Czasopismo
Rocznik
Tom
195
Numer
2
Strony
113-125
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
  • Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China
autor
  • Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China
autor
  • Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.