PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | 195 | 2 | 99-112
Tytuł artykułu

Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be a Banach space and T ∈ L(X), the space of all bounded linear operators on X. We give a list of necessary and sufficient conditions for the uniform stability of T, that is, for the convergence of the sequence $(Tⁿ)_{n∈ ℕ}$ of iterates of T in the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ ℕ, the restriction of the pth iterate of T to the range of I-T is a Banach contraction. Our proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction Principle. As a consequence, we obtain a theorem on the uniform convergence of iterates of some positive linear operators on C(Ω), which generalizes and subsumes many earlier results including, the Kelisky-Rivlin theorem for univariate Bernstein operators, and its extensions for multivariate Bernstein polynomials over simplices. As another application, we also get a new theorem in this setting giving a formula for the limit of iterates of the tensor product Bernstein operators.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.