Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space $Ḟ^{s}_{p,q}(ℝⁿ)$ to a quasi-Banach space ℬ if and only if
sup{$||T(a)||_{ℬ}$: a is an infinitely differentiable (p,q,s)-atom of $Ḟ_{p,q}^{s}(ℝⁿ)$} < ∞,
where the (p,q,s)-atom of $Ḟ_{p,q}^{s}(ℝⁿ)$ is as defined by Han, Paluszyński and Weiss.
sup{$||T(a)||_{ℬ}$: a is an infinitely differentiable (p,q,s)-atom of $Ḟ_{p,q}^{s}(ℝⁿ)$} < ∞,
where the (p,q,s)-atom of $Ḟ_{p,q}^{s}(ℝⁿ)$ is as defined by Han, Paluszyński and Weiss.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
163-183
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China
autor
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5