Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 189 | 3 | 287-300

Tytuł artykułu

Semigroups generated by convex combinations of several Feller generators in models of mathematical biology

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let 𝓢 be a locally compact Hausdorff space. Let $A_{i}$, i = 0,1,...,N, be generators of Feller semigroups in C₀(𝓢) with related Feller processes $X_{i} = {X_{i}(t), t ≥ 0}$ and let $α_{i}$, i = 0,...,N, be non-negative continuous functions on 𝓢 with $∑_{i=0}^{N} α_{i} = 1$. Assume that the closure A of $∑_{k=0}^{N} α_{k}A_{k}$ defined on $⋂_{i=0}^{N} 𝓓(A_{i})$ generates a Feller semigroup {T(t), t ≥ 0} in C₀(𝓢). A natural interpretation of a related Feller process X = {X(t), t ≥ 0} is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ 𝓢, with probability $α_{i}(p)$, the process behaves like $X_{i}$, i = 0,1,...,N. We provide an approximation of {T(t), t ≥ 0} via a sequence of semigroups acting in the Cartesian product of N + 1 copies of C₀(𝓢) that supports this interpretation, thus generalizing the main theorem of Bobrowski [J. Evolution Equations 7 (2007)] where the case N = 1 is treated. The result is motivated by examples from mathematical biology involving models of gene expression, gene regulation and fish dynamics.

Słowa kluczowe

Twórcy

  • Institute of Mathematics, Polish Academy of Sciences, Katowice branch, Bankowa 14, 40-007 Katowice, Poland
  • Department of Mathematics, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Actuarial and Insurance Solutions, Deloitte Advisory Ltd., Piękna 18, 00-549 Warszawa, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.