EN
We consider some non-autonomous second order Cauchy problems of the form
ü + B(t)u̇ + A(t)u = f(t ∈ [0,T]), u(0) = u̇(0) = 0.
We assume that the first order problem
u̇ + B(t)u = f(t ∈ [0,T]), u(0) = 0,
has $L^{p}$-maximal regularity. Then we establish $L^{p}$-maximal regularity of the second order problem in situations when the domains of B(t₁) and A(t₂) always coincide, or when A(t) = κB(t).