Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 189 | 2 | 147-187

Tytuł artykułu

On the infimum convolution inequality

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We study the infimum convolution inequalities. Such an inequality was first introduced by B. Maurey to give the optimal concentration of measure behaviour for the product exponential measure. We show how IC inequalities are tied to concentration and study the optimal cost functions for an arbitrary probability measure μ. In particular, we prove an optimal IC inequality for product log-concave measures and for uniform measures on the $ℓⁿ_{p}$ balls. Such an optimal inequality implies, for a given measure, the central limit theorem of Klartag and the tail estimates of Paouris.

Twórcy

autor
  • Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 21, 00-956 Warszawa 10, Poland
  • Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-5