EN
Let μ be a nonnegative Radon measure on $ℝ^{d}$ which satisfies μ(B(x,r)) ≤ Crⁿ for any $x ∈ ℝ^{d}$ and r > 0 and some positive constants C and n ∈ (0,d]. In this paper, some weighted norm inequalities with $A_{p}^{ϱ}(μ)$ weights of Muckenhoupt type are obtained for maximal singular integral operators with such a measure μ, via certain weighted estimates with $A_{∞}^{ϱ}(μ)$ weights of Muckenhoupt type involving the John-Strömberg maximal operator and the John-Strömberg sharp maximal operator, where ϱ,p ∈ [1,∞).