Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower-$ℓ_{q}$-tree estimate and let T be a bounded linear operator from X which satisfies an upper-$ℓ_{p}$-tree estimate. Then T factors through a subspace of $(∑ Fₙ)_{ℓ_{r}}$, where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an $(ℓ_{p}, ℓ_{q})$ FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic lower-$ℓ_{q}$-tree estimate. Let T be a bounded linear operator from X which satisfies an asymptotic upper-$ℓ_{p}$-tree estimate. Then T factors through a subspace of $(∑ Gₙ)_{ℓ_{r}}$, where (Gₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an asymptotic $(ℓ_{p},ℓ_{q})$ FDD.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
87-98
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin, TX 78712-0257, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6