PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 185 | 1 | 67-82
Tytuł artykułu

The random paving property for uniformly bounded matrices

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison-Singer problem. The result shows that every unit-norm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so that the restriction of the matrix to each block of coordinates has norm less than one half. The original proof of Bourgain and Tzafriri involves a long, delicate calculation. The new proof relies on the systematic use of symmetrization and (noncommutative) Khinchin inequalities to estimate the norms of some random matrices.
Słowa kluczowe
Czasopismo
Rocznik
Tom
185
Numer
1
Strony
67-82
Opis fizyczny
Daty
wydano
2008
Twórcy
  • Applied & Computational Mathematics, MC 217-50, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125-5000, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.