EN
We study the supremum of some random Dirichlet polynomials $D_{N}(t) = ∑_{n=2}^{N} εₙdₙn^{-σ-it}$, where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials $∑_{n∈ 𝓔_{τ}} εₙn^{-σ-it}$, $𝓔_{τ} = {2 ≤ n ≤ N : P⁺(n) ≤ p_{τ}}$, P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec,
$𝔼 sup_{t∈ ℝ} |∑_{n=2}^{N} εₙn^{-σ-it}| ≈ (N^{1-σ})/(log N)$.
The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.