Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let X,Y,A and B be Banach spaces such that X is isomorphic to Y ⊕ A and Y is isomorphic to X ⊕ B. In 1996, W. T. Gowers solved the Schroeder-Bernstein problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In the present paper, we give a necessary and sufficient condition on sextuples (p,q,r,s,u,v) in ℕ with p + q ≥ 2, r + s ≥ 1 and u, v ∈ ℕ* for X to be isomorphic to Y whenever these spaces satisfy the following decomposition scheme:
⎧ $X^{u} ∼ X^{p} ⊕ Y^{q}$,
⎨
⎩ $Y^{v} ∼ A^{r} ⊕ B^{s}$.
Namely, Ω = (p-u)(s-r-v) - q(r-s) is different from zero and Ω divides p + q - u and v. In other words, we obtain an arithmetic characterization of some extensions of the classical Pełczyński decomposition method in Banach spaces. This result leads naturally to several problems closely related to the Schroeder-Bernstein problem.
⎧ $X^{u} ∼ X^{p} ⊕ Y^{q}$,
⎨
⎩ $Y^{v} ∼ A^{r} ⊕ B^{s}$.
Namely, Ω = (p-u)(s-r-v) - q(r-s) is different from zero and Ω divides p + q - u and v. In other words, we obtain an arithmetic characterization of some extensions of the classical Pełczyński decomposition method in Banach spaces. This result leads naturally to several problems closely related to the Schroeder-Bernstein problem.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
27-40
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics - IME, University of São Paulo, São Paulo 05315-970, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-1-3