Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2007 | 180 | 1 | 1-10

Tytuł artykułu

Approximation of a symmetric α-stable Lévy process by a Lévy process with finite moments of all orders

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we consider a symmetric α-stable Lévy process Z. We use a series representation of Z to condition it on the largest jump. Under this condition, Z can be presented as a sum of two independent processes. One of them is a Lévy process $Y_{x}$ parametrized by x > 0 which has finite moments of all orders. We show that $Y_{x}$ converges to Z uniformly on compact sets with probability one as x↓ 0. The first term in the cumulant expansion of $Y_{x}$ corresponds to a Brownian motion which implies that $Y_{x}$ can be approximated by Brownian motion when x is large. We also study integrals of a non-random function with respect to $Y_{x}$ and derive the covariance function of those integrals. A symmetric α-stable random vector is approximated with probability one by a random vector with components having finite second moments.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, Wrocław University of Economics, 53-345 Wrocław, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-1-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.