Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Given Banach algebras A and B with spectrum σ(B) ≠ ∅, and given θ ∈ σ(B), we define a product $A ×_{θ} B$, which is a strongly splitting Banach algebra extension of B by A. We obtain characterizations of bounded approximate identities, spectrum, topological center, minimal idempotents, and study the ideal structure of these products. By assuming B to be a Banach algebra in 𝓒₀(X) whose spectrum can be identified with X, we apply our results to harmonic analysis, and study the question of spectral synthesis, and primary ideals.
Słowa kluczowe
Kategorie tematyczne
- 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
- 46J20: Ideals, maximal ideals, boundaries
- 46H10: Ideals and subalgebras
- 46J10: Banach algebras of continuous functions, function algebras
- 46H20: Structure, classification of topological algebras
- 43A45: Spectral synthesis on groups, semigroups, etc.
Czasopismo
Rocznik
Tom
Numer
Strony
277-294
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics and Statistics, University of Windsor, Windsor, ON, N9B 3P4, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-3-4