Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 177 | 2 | 183-194

Tytuł artykułu

Digit sets of integral self-affine tiles with prime determinant

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let M ∈ Mₙ(ℤ) be expanding such that |det(M)| = p is a prime and pℤⁿ ⊈ M²(ℤⁿ). Let D ⊂ ℤⁿ be a finite set with |D| = |det(M)|. Suppose the attractor T(M,D) of the iterated function system ${ϕ_{d}(x) = M^{-1}(x+d)}_{d∈ D}$ has positive Lebesgue measure. We prove that (i) if D ⊈ M(ℤⁿ), then D is a complete set of coset representatives of ℤⁿ/M(ℤⁿ); (ii) if D ⊆ M(ℤⁿ), then there exists a positive integer γ such that $D = M^{γ}D₀$, where D₀ is a complete set of coset representatives of ℤⁿ/M(ℤⁿ). This improves the corresponding results of Kenyon, Lagarias and Wang. We then give several remarks and examples to illustrate some problems on digit sets.

Słowa kluczowe

Twórcy

autor
  • College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P.R. China

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-2-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.