Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A subset E of a discrete abelian group is a "Fatou-Zygmund interpolation set" (FZI₀ set) if every bounded Hermitian function on E is the restriction of the Fourier-Stieltjes transform of a discrete, non-negative measure.
We show that every infinite subset of a discrete abelian group contains an FZI₀ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are FZI₀ (with that stronger interpolation property).
We show that every infinite subset of a discrete abelian group contains an FZI₀ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are FZI₀ (with that stronger interpolation property).
Słowa kluczowe
Kategorie tematyczne
- 42A55: Lacunary series of trigonometric and other functions; Riesz products
- 43A05: Measures on groups and semigroups, etc.
- 42A82: Positive definite functions
- 43A25: Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
- 43A46: Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)
Czasopismo
Rocznik
Tom
Numer
Strony
9-24
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada
- RR#1-D-156, Bowen Island, B.C., Canada V0N 1G0
autor
- Department of Pure Mathematics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-2