PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 176 | 2 | 95-112
Tytuł artykułu

A radial estimate for the maximal operator associated with the free Schrödinger equation

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator $S_{d}$ and its associated global maximal operator $S**_{d}$ by
$(S_{d}f)(x,t) = 1/(2π)ⁿ ∫_{ℝⁿ} e^{ix·ξ} e^{it|ξ|^{d}} f̂(ξ)dξ$, f ∈ 𝓢(ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ,
$(S**_{d}f)(x) = sup_{t∈ ℝ} |1/(2π)ⁿ ∫_{ℝⁿ} e^{ix·ξ} e^{it|ξ|^{d}} f̂(ξ)dξ|$, f ∈ 𝓢(ℝⁿ), x ∈ ℝⁿ,
where f̂ is the Fourier transform of f and 𝓢(ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, $S_{d}f$ is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ 𝓢(ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the maximal function estimate
$(∫_{ℝⁿ} |(S**_{d}f)(x)|^{p} dx)^{1/p} ≤ C||f||_{H_{s}(ℝⁿ)$
holds for s > n(1/2 - 1/p) and fails for s < n(1/2 - 1/p), where $H_{s}(ℝⁿ)$ is the L²-Sobolev space with norm
$||f||_{H_{s}(ℝⁿ)} = (∫_{ℝⁿ} (1+|ξ|²)^{s}|f̂(ξ)|²dξ)^{1/2}$.
We also prove that for radial functions f ∈ 𝓢(ℝⁿ), if n ≥ 3, n/(n-1) < d < n²/2(n-1), then the estimate
$(∫_{ℝⁿ} |(S**_{d}f)(x)|^{2n/(n-d)}dx)^{(n-d)/2n} ≤ C||f||_{H_{s}(ℝⁿ)}$
holds for s > d/2 and fails for s < d/2. These results complement other estimates obtained by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]-[13], Vega [19]-[20], Walther [21]-[23] and Wang [24].
Słowa kluczowe
Czasopismo
Rocznik
Tom
176
Numer
2
Strony
95-112
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
  • Defence Research and Development Canada-Ottawa, 3701 Carling Avenue, Ottawa, Ontario, Canada K1A 0Z4
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.