Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let T be a continuous linear operator acting on a Banach space X. We examine whether certain fundamental results for hypercyclic operators are still valid in the Cesàro hypercyclicity setting. In particular, in connection with the somewhere dense orbit theorem of Bourdon and Feldman, we show that if for some vector x ∈ X the set {Tx,T²/2 x,T³/3 x, ... } is somewhere dense then for every 0 < ε < 1 the set (0,ε){Tx,T²/2 x,T³/3 x,...} is dense in X. Inspired by a result of Feldman, we also prove that if the sequence ${n^{-1}Tⁿx}$ is d-dense then the operator T is Cesàro hypercyclic. Finally, following the work of León-Saavedra and Müller, we consider rotations of Cesàro hypercyclic operators and we establish that in certain cases, for any λ with |λ | = 1, T and λT share the same sets of Cesàro hypercyclic vectors.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
249-269
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- Department of Mathematics, University of Crete, Knossos Avenue, GR-714 09 Heraklion, Crete, Greece
autor
- Department of Applied Mathematics, University of Crete, Knossos Avenue, GR-714 09 Heraklion, Crete, Greece
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-4