EN
A sequence (Tₙ) of bounded linear operators between Banach spaces X,Y is said to be hypercyclic if there exists a vector x ∈ X such that the orbit Tₙx is dense in Y. The paper gives a survey of various conditions that imply the hypercyclicity of (Tₙ) and studies relations among them. The particular case of X = Y and mutually commuting operators Tₙ is analyzed. This includes the most interesting cases (Tⁿ) and (λₙTⁿ) where T is a fixed operator and λₙ are complex numbers. We also study when a sequence of operators has a large (either dense or closed infinite-dimensional) manifold consisting of hypercyclic vectors.