We consider a Sturm-Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in $L_{p}$ of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L₂ we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness in $L_{p}$ we use F. Riesz's theorem.