PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 172 | 1 | 25-46
Tytuł artykułu

Uniform spectral radius and compact Gelfand transform

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is $K_{ν} = sup{||(e-x)^{-1}||_{p}: x ∈ A, ||x||_{p} ≤ 1, max|x̂| ≤ ν}$ bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is $C_{δ} = sup{||x^{-1}||_{p}: x ∈ A, ||x||_{p} ≤ 1, min|x̂| ≥ δ}$ bounded? Both questions are related to a "uniform spectral radius" of the algebra, $r_{∞}(A)$, introduced by Björk. Question (i) has an affirmative answer if and only if $r_{∞}(A) < 1$, and this result is extended to more general nonlinear extremal problems of this type. Question (ii) is more difficult, but it can also be related to the uniform spectral radius. For algebras with compact Gelfand transform we prove that the answer is "yes" for all δ ∈ (0,1) if and only if $r_{∞}(A) = 0$. Finally, we specialize to semisimple Beurling type algebras $ℓ^{p}_{ω}(𝓓)$, where 0 < p < 1 and 𝓓 = ℕ or 𝓓 = ℤ. We show that the number $r_{∞}(ℓ^{p}_{ω}(𝓓))$ can be effectively computed in terms of the underlying weight. In particular, this solves questions (i) and (ii) for many of these algebras. We also construct weights such that the corresponding Beurling algebra has a compact Gelfand transform, but the uniform spectral radius equals an arbitrary given number in (0,1].
Słowa kluczowe
Twórcy
  • Centre for Mathematical Sciences, Mathematics (Faculty of Science), University of Lund, Box 118, SE-221 00 Lund, Sweden
  • Centre for Mathematical Sciences, Mathematics (Faculty of Science), University of Lund, Box 118, SE-221 00 Lund, Sweden
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.