Warianty tytułu
Języki publikacji
Abstrakty
For a holomorphic function ψ defined on a sector we give a condition implying the identity
$(X,𝒟(A^{α}))_{θ,p} = {x ∈ X | t^{-θ Re α} ψ(tA) ∈ L⁎^{p}((0,∞);X)}$
where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
$(X,𝒟(A^{α}))_{θ,p} = {x ∈ X | t^{-θ Re α} ψ(tA) ∈ L⁎^{p}((0,∞);X)}$
where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
177-195
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4