Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in $ℓ_{∞}$ as well as in separable Banach spaces.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
147-171
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Division of Mathematical Sciences, National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, U.S.A.
autor
- School of Mathematics, University of East Anglia, Norwich, NR4s 7TJ, UK
autor
- Theoretische Informatik und Logik, Universität Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
autor
- Department of Math. Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
autor
- Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-2-3