Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 169 | 3 | 207-228

Tytuł artykułu

Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M,J,J] ⊆ M, where [·,·,·] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U,J,J], where U is the ideal of J generated by [M,M,M].
Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure Ĵ, and let Φ: H → J be a Lie triple epimorphism (i.e. a linear surjection preserving associators). Assume that deg(J) ≥ 12. Then we show that there exist a homomorphism Ψ: H → Ĵ and a linear map τ: H → C satisfying τ([H,H,H]) = 0 such that either Φ = Ψ + τ or Φ = -Ψ + τ.
Using the preceding results we show that the separating space of a Lie triple epimorphism between Jordan-Banach algebras H and J lies in the center modulo the radical of J.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, University of Maribor, PEF, Koroška 160, 2000 Maribor, Slovenia
autor
  • Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
autor
  • Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
  • Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm169-3-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.