Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a group of automorphisms of a tree X (with set of vertices S) and H a kernel on S × S invariant under the action of G. We want to give an estimate of the $l^{r}$-operator norm (1 ≤ r ≤ 2) of the operator associated to H in terms of a norm for H. This was obtained by U. Haagerup when G is the free group acting simply transitively on a homogeneous tree.
Our result is valid when X is a locally finite tree and one of the orbits of G is the set of vertices at even distance from a given vertex; a technical hypothesis, always true when G is discrete, is also assumed.
As an application we prove the invertibility of an $l^{r}$-operator on S.
Our result is valid when X is a locally finite tree and one of the orbits of G is the set of vertices at even distance from a given vertex; a technical hypothesis, always true when G is discrete, is also assumed.
As an application we prove the invertibility of an $l^{r}$-operator on S.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
217-227
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Département de Mathématiques, Faculté des Sciences de Monastir, 5000 Monastir, Tunisie
autor
- Institut Elie Cartan, Unité mixte de Recherche 7502, Université Henri Poincaré Nancy 1, B.P. 239, 54506 Vandœuvre-lès-Nancy, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-3