PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 168 | 2 | 95-108
Tytuł artykułu

On the vector-valued Fourier transform and compatibility of operators

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let 𝔾 be a locally compact abelian group and let 1 < p ≤ 2. 𝔾' is the dual group of 𝔾, and p' the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform $F^{𝔾}$ if $F^{𝔾} ⊗ T: L_{p}(𝔾) ⊗ X → L_{p'}(𝔾') ⊗ Y $ admits a continuous extension $[F^{𝔾},T]:[L_{p}(𝔾),X] → [L_{p'}(𝔾'),Y]$. Let $ℱT_{p}^{𝔾}$ denote the collection of such T's. We show that $ℱT_{p}^{ℝ×𝔾} = ℱT_{p}^{ℤ×𝔾} = ℱT_{p}^{ℤⁿ×𝔾}$ for any 𝔾 and positive integer n. Moreover, if the factor group of 𝔾 by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then $ℱT_{p}^{𝔾} = ℱT_{p}^{ℤ}$.
Słowa kluczowe
Twórcy
autor
  • Division of Applied Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Kuseong-dong, Yuseong-gu, Taejeon 305-701, Republic of Korea
  • Next generation radio transmission research team, Mobile telecommunication group, Electronics and Telecommunications Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Republic of Korea
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.