PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 167 | 1 | 63-98
Tytuł artykułu

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let $(X,ϱ,μ)_{d,θ}$ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x',y ∈ X,
$|ϱ(x,y) - ϱ(x',y)| ≤ C₀ϱ(x,x')^{θ} [ϱ(x,y) + ϱ(x',y)]^{1-θ}$,
and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X,
$μ({y ∈ X: ϱ(x,y) < r}) ∼ r^{d}$.
Let ε ∈ (0,θ], |s| < ε and max{d/(d+ε),d/(d+s+ε)} < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces $F^{s}_{∞q}(X)$ and establishes their frame characterizations by first establishing a Plancherel-Pólya-type inequality related to the norm $||·||_{F^{s}_{∞q}(X)}$, which completes the theory of function spaces on spaces of homogeneous type. Moreover, the author establishes the connection between the space $F^{s}_{∞q}(X)$ and the homogeneous Triebel-Lizorkin space $Ḟ^{s}_{∞q}(X)$. In particular, he proves that bmo(X) coincides with $F⁰_{∞2}(X)$.
Słowa kluczowe
Twórcy
autor
  • Department of Mathematics, Beijing Normal University, Beijing 100875, People's Republic of China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm167-1-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.