EN
We study the relationship between the classical invariance properties of amenable locally compact groups G and the approximate diagonals possessed by their associated group algebras L¹(G). From the existence of a weak form of approximate diagonal for L¹(G) we provide a direct proof that G is amenable. Conversely, we give a formula for constructing a strong form of approximate diagonal for any amenable locally compact group. In particular we have a new proof of Johnson's Theorem: A locally compact group G is amenable precisely when L¹(G) is an amenable Banach algebra. Several structural Følner-type conditions are derived, each of which is shown to correctly reflect the amenability of L¹(G). We provide Følner conditions characterizing semigroups with 1-amenable semigroup algebras.