Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 162 | 1 | 53-96

Tytuł artykułu

Characterization of surjective partial differential operators on spaces of real analytic functions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let A(Ω) denote the real analytic functions defined on an open set Ω ⊂ ℝⁿ. We show that a partial differential operator P(D) with constant coefficients is surjective on A(Ω) if and only if for any relatively compact open ω ⊂ Ω, P(D) admits (shifted) hyperfunction elementary solutions on Ω which are real analytic on ω (and if the equation P(D)f = g, g ∈ A(Ω), may be solved on ω). The latter condition is redundant if the elementary solutions are defined on conv(Ω). This extends and improves previous results of Andersson, Kawai, Kaneko and Zampieri. For convex Ω, a different characterization of surjective operators P(D) on A(Ω) was given by Hörmander using a Phragmén-Lindelöf type condition, which cannot be extended to the case of noncovex Ω. The paper is based on a surjectivity criterion for exact sequences of projective (DFS)-spectra which improves earlier results of Braun and Vogt, and Frerick and Wengenroth.

Słowa kluczowe

Twórcy

  • Department of Mathematics, University of Oldenburg, D-26111 Oldenburg, Germany

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-1-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.